2017 Alabama Newborn Screening Conference

Marriott Hotel and Conference Center Prattville, Alabama Friday, August 18, 2017

Inherited Disorders of Metabolism

S Lane Rutledge, MD
Professor of Genetics and Pediatrics
Director of Clinical Services
Department of Genetics
University of Alabama at Birmingham

Inherited Disorders of Metabolism Definition

- Clinical or biochemical condition caused by an enzyme deficiency
- Enzyme may have completely or partially absent activity: so patient can present early or later
- Enzyme is deficient as a result of genetic mutation

Inherited Disorders of Metabolism Biochemistry

- Biochemical abnormality precedes signs and symptoms: a latent period where the biochemistry is abnormal but the infant is well
- This latent period is basis of newborn screening
- Want to diagnose baby before illness is apparent!

Inherited Disorders of Metabolism Biochemistry

- The abnormality is not always an enzyme
- However, the abnormality does always involve a biochemical pathway
- So there should be some biochemical test available for the disorder
- We do screen for the full recommended panel

Alabama Newborn Screening for Inherited Disorders of Metabolism

- Most common abnormalities
 - -Premature infants
 - · Many false positives due to TPN
 - "expected abnormalities in light of clinical setting"

Alabama Newborn Screening for Inherited Disorders of Metabolism

- High tyrosine level due to enzyme immaturity or liver disease
- 4 most common diagnoses of confirmed metabolic disorders

Alabama Newborn Screening for Inherited Disorders of Metabolism

- hyperphenylalaninemia
- -MCAD
- -VLCAD
- -galactosemia

	2016 Diagnoses	
Hyperphe=4	Hyperphe=4	
PKU=5	PKU=2	
Galactosemia=0	Galactosemia=4	
Duarte Galactosemia=10	Duarte Galactosemia=4	
VLCADD=1	VLCADD=3	
VLCADD Carriers=4	VLCADD Carriers=3	
MCADD=5	MCADD=3	
MCADD Carriers=12	MCADD Carriers=0	
CUD=2	CUD=1	
CUD Carriers=0	CUD Carriers=2	
Maternal 3MCC=1	Maternal 3MCC=0	
Citrullinemia Carrier=0	Citrullinemia Carrier=2	
GA1=1	GA1=0	

PKU

PKU History

- 1934: Fölling first described unusual compound in urine of 2 intellectually disabled siblings
 - Really the story of a determined mom and a doctor who listened!
- 1951: successful treatment with diet
- 1960: Guthrie test developed and newborn screening started

The discovery of phenylketonuria: the story of a young couple, two retarded children, and a scientist.
Centerwall SA, Centerwall WR.
Pediatrics. 2000 Jan;105(1 Pt 1):89-103.

NORMAL IEM
A→B A→B

↓
C
C

PKU: Clinical Untreated

• Gradual onset (first year of life) of significant intellectual disability

-50-70% IQ < 35

-90% IQ < 65

-2-5% IQ normal

PKU: Clinical Untreated

- Fair pigmentation for ethnic group
- Eczema
- Musty odor

PKU Treated

- Normal IQ!!
- Best outcome with strict, lifelong adherence to diet
- Discontinuation of diet will result in loss of IQ points and psychological abnormalities for most patients
- Diet treatment in first few weeks of life leads to normal outcome

INITIAL WORK UP FOR PKU

- Differential diagnosis of elevated phenylalanine levels
 - -PKU
 - -Biopterin defects
 - -Infant on TPN

INITIAL WORK UP FOR PKU

- Obtain plasma amino acids and urine and blood for biopterin studies before come to clinic
- In general, we do not obtain any genetic testing

Initial clinic visit: PKU

- · Confirm diagnosis
 - Initiate treatment as soon as family notified
 - Clinic visit ASAP
 - Confirm diagnosis same day as clinic visit
 - In most patients, treatment initiated within 7-14 DOL

Initial clinic visit: PKU

- Education about
 - -Newborn screening
 - -Condition
 - -Genetics

Initial clinic visit: PKU

- · Diet explanation
 - -Washout
 - Daily diet: changes weekly based on levels
- Lots of phone numbers and contact info and f/u visit within 7-10 days

INBORN ERRORS OF FATTY ACID METABOLISM

We screen for several, but just discuss our more common today

COMMON FEATURES OF FATTY ACID OXIDATION DEFECTS

- · Metabolic decompensation during fasting
 - a) In children: fasting, especially with illness decreased oral intake, increased energy needs
 - b) Altered mental status progressing to coma
 - c) SIDS (1-3%)
 - d) Positive family history, recurrent episodes

COMMON FEATURES OF FATTY ACID OXIDATION DEFECTS

- Metabolic decompensation: other precipitants:
 - a) Exposure to cold
 - b) Excessive alcohol ingestion
 - c) Exercise
 - d) Fat rich diet
 - e) Prolonged fasting

MCAD Untreated

- · Patients are clinically well
- They develop a "routine" childhood illness with loss of appetite and usually with vomiting
- They may have an episode with longer recovery than other family members OR
- They may be found dead 1-3 days into course of illness

Disorders of FAO β 0xidation CLINICAL PRESENTATIONS Medium Chain Fats

- For unscreened (undiagnosed) patients:
 - Death in 25-30% of patients with first episode
 - Neurocognitive residual in 32% survivors of an episode of metabolic decompensation

Disorders of FAO β 0xidation CLINICAL PRESENTATIONS Medium Chain Fats

- NBS changes all of this
 - -5 fold higher risk of death in unscreened patients

Initial Clinic Visit: MCAD

- · Send testing to confirm diagnosis
 - Initiate treatment with first phone call, prior to confirmation
 - -Clinic visit ASAP

Initial Clinic Visit: MCAD

- Education about
 - Newborn screening
 - -Condition
 - -Genetics

Initial Clinic Visit: MCAD

- Plan for intercurrent illnesses
 - mild illnesses with normal appetite
 - -Illnesses which meet our admit criteria
- Lots of phone numbers and contact info and f/u visit within 7-10 days

Disorders of FAO β Oxidation TREATMENT

- · GOAL:
 - Avoid fasting, especially fasting with increased metabolic rate
 - Provide appropriate types of fat in diet

Disorders of FAO β Oxidation TREATMENT

- · METHODS:
 - -Normal meal/snack pattern
 - -cornstarch
 - Increase calories from sugar when needed
 - -Carnitine in some
 - -Treat illness aggressively

Disorders of FAO β 0xidation CLINICAL PRESENTATIONS Medium Chain Fats

- · Known diagnosis:
- · Admit for illness criteria
 - vomiting >2 times in < 8hours
 - -Fever of 101° for > 4 hours
 - Diarrheal illness

Disorders of FAO β 0xidation CLINICAL PRESENTATIONS Medium Chain Fats

- -Anything we think needs admitting!
- · If they look very ill, or glucose is low

we have waited too long!

MCAD: Metabolic Decompensation

What exactly are we doing?

IV glucose: shutting down ongoing fat metabolism, decreasing substrate into system

Carnitine: promoting metabolic flux AVOIDING FURTHER DEAD CHILDREN

Current problems with evaluation for MCAD

- · Alert values only
 - This means we work up any newborn who meets our criteria
- · Often: quite clear have MCAD
- · Sometimes: values are not as clear cut
 - Ancillary testing helps with this
- UNABLE TO GET MOLECULAR ANALYSIS ON MEDICAID PATIENTS

Disorders of FAO β 0xidation CLINICAL PRESENTATIONS Long chain fats: 3 Clinical Presentations

- Early onset and severe (occasionally in utero)
 - Heart, liver, hypoketotic hypoglycemia
 - -Significant fatality rate

Disorders of FAO β 0xidation CLINICAL PRESENTATIONS Long chain fats: 3 Clinical Presentations

- · Infancy onset, milder
 - -Onset with infections
 - Heart, liver hypoketotic hypoglycemia

Disorders of FAO β 0xidation CLINICAL PRESENTATIONS Long chain fats: 3 Clinical Presentations

- · Later onset and myopathic
 - Often induced by exercise or infection
 - Muscle: may include rhabdomyolysis
 - Early onset presentations who survive may evolve to this

VLCAD

- If 3 different presentations, how do we decide what the baby is at risk for?
 - Ancillary biochemical testing not helpful (may normalize)
 - -Can do skin fibroblasts
 - Mildly invasive procedure
 - Takes weeks for results

VLCAD

- Molecular
 - Expected clinical presentation based on mutations
- Cannot get molecular testing on Medicaid patients
 - We can order but Medicaid won't pay and family will get large bill

VLCAD

- Insurance maybe 80/20
 - -Family may get large bill
- This really hurts our ability to care for these patients

VLCAD: echo pre and post RX Al M 86 18.7 p. 18.7 p. 18.7 p. 18.8 p. 18.9 p. 1

GALACTOSEMIA

Inborn Error of Carbohydrate Metabolism

Inherited Disorders of Carbohydrate Metabolism

- Deficiencies in stored glucose (glycogen) metabolism
- 2. Deficiencies in ability to metabolize ingested sugars (galactose, fructose)
- 3. Deficiencies in muscle carbohydrate metabolism: metabolic myopathies
- 4. Many things (hormones) affect carbohydrate metabolism

GALACTOSEMIA

- EARLY CLINICAL
 - -FTT
 - -vomiting and diarrhea
 - -LIVER: hepatopathy: direct bili, coags, transaminases

GALACTOSEMIA

- LABORATORY
 - -elevated LFT's/coagulopathy
 - -E Coli infection
 - positive urine reducing substances: not glucose

GALACTOSEMIA

- LATE CLINICAL
 - -ovarian failure
 - -speech delay

GALACTOSEMIA NOW

- Most patients detected by newborn screening before becoming ill
- Carriers are detected by newborn screening
- Approximately 1 new case of classic galactosemia/year
- · Many carriers diagnosed/year
- · Must be on galactose to be symptomatic

How do we diagnose?

- · State lab measures enzymes but
 - -This is just a screen
 - Get result of < 2.5 u/dl, presumed positive</p>
 - -Often picks up carrier

How do we diagnose?

- So how do we figure out who has disease?
- Galactosemia genes can come in 1 of 3 ways
 - Normal "N": normal enzyme activity
 - Classic galactosemia "G": no enzyme activity
 - Duarte "D": some residual enzyme activity

How do we diagnose?

- We often pick up, as positive, babies who have
 - -NG: no treatment required
 - DG: treatment probably not required but we do change formula And ongoing studies about treatment requirements

How do we diagnose?

- · We would like to do genetic confirmation
 - that will tell us exactly what infant has
- · Currently, we base our specific diagnosis on enzyme activity
- · Usually effective, can be a little iffy

GALACTOSEMIA, GALT ENZYME ACTIVITY		Method: Radioenzymatic Assay	
	umol/hr/gm Hh	Normal	Note
Galactose-1-Phosphate Uridyltransferase	0.0	22.2 + 45.8	

The world of lab testing coverage must keep pace with what is necessary, and least expensive, in 2017

Practicing 20th century medicine in 21st century

How do we diagnose?

- · Cannot get molecular testing on **Medicaid patients**
 - -We can order but Medicaid won't pay and family will get large bill
- Insurance maybe 80/20
 - Family may get large bill
- · This really hurts our ability to care for these patients

PKU & MCAD Examples of Why NBS Works

- - -Patients develop severe brain damage over time
 - Early treatment prevents the brain damage
 - -We can detect it early enough to prevent any brain injury from occurring

PKU & MCAD Examples of · MCAD: Why NBS Works

- - Patients are well and normal until their first significant illness
 - $-\frac{1}{3}$ to $\frac{1}{2}$ of patients with undiagnosed MCAD will die with their first significant illness
 - These deaths are prevented by knowing that the child has MCAD and treating with IV glucose for illnesses

PKU & MCAD Why difference in Initiating Treatment?

- · PKU:
 - -Treatment is restriction of phenylalanine by restricting protein and adding special metabolic formula
 - -This can be quite dangerous to do if you do NOT have PKU or hyperphenylalaninemia

PKU & MCAD Why difference in Initiating Treatment?

- · MCAD:
 - -Treatment is primarily IV glucose with significant intercurrent illness
 - So not dangerous to treat with IV glucose if you do NOT have MCAD
 - very dangerous to NOT treat with IV glucose if you do have MCAD and develop an illness

Current Problems in Metabolic Newborn Screening

- Too many repeats!!
 - Do enough and something will show up as abnormal
 - -Just do the gold standard test
 - -Especially true in NICU patients
 - -Follow protocol but beyond that...

Current Problems in Metabolic Newborn Screening

- Sending incorrect confirmatory testing
 - -ASK ALICIA 205-996-6983

Current problems in Metabolic Newborn Screening

- · Inability to get genetic analysis
 - Not just for the ones I discussed but true for many of these
- · Still often called "the PKU test"
- DO NOT CALL IT THE PKU TEST!!

Produced by the
Distance Learning &
Telehealth Division
Alabama Department of Public Health
(334) 206-5618
alphtn@adph.state.al.us
August 2017

