Newborn Screening Follow-up: Preventing Morbidity and Mortality in Children with Congenital Hypothyroidism and Congenital Adrenal Hyperplasia

Satellite Conference and Live Webcast Thursday, November 14, 2013 2:00 – 3:30 p.m. Central Time

Produced by the Alabama Department of Public Health Video Communications and Distance Learning Division

Faculty

Gail Mick, MD
Professor of Pediatric Endocrinology

Leslie Pitts, CRNP Endocrine Newborn Screening Consultant

University of Alabama at Birmingham

Presentation Overview

- Discussion of the pathophysiology of congenital hypothyroidism and congenital adrenal hyperplasia, with primary emphasis on the diagnostic criteria and screening process
- Highlight case studies of various congenital hypothyroidism and CAH presentations

Presentation Overview

- Evaluate the value of long-term management following initial diagnosis
- Explore challenges encountered in the treatment process
- Review frequently asked questions regarding diagnosis confirmation and initiation of treatment

Presentation Overview

 Overview services provided by Children's Hospital of Alabama

Exploring Pathophysiology:
Congenital Hypothyroidism
and
Congenital Adrenal Hyperplasia

Congenital Hypothyroidism

- Inability of the thyroid gland to produce adequate thyroxine (T4) and triiodothyronine (T3)
- · Presents in the newborn period
 - Even severe cases are often clinically silent in infants
 - Therefore newborn blood screening universally recommended

Congenital Hypothyroidism

- Occurs in approximately
 1:3,000 1:4,000 babies
 - More common in Hispanic population
- Approximately 85% of cases are sporadic and due to thyroid dysgenesis
 - Abnormal thyroid anatomy

Congenital Hypothyroidism

- Approximately 10% of cases are due to dyshormonogenesis
 - Defect in hormone synthesis, often inherited in autosomal recessive pattern
- Small percentage due to central hypothyroidism
 - -Inadequate TSH stimulation

Congenital Hypothyroidism

 Rarely, transient hypothyroidism secondary to transplacental passage of maternal medications or antithyroid autoantibodies

Congenital Hypothyroidism Hypothalamus TRH Pituitary T3 T4 Thyroid Gland (Huang, 2010, pp. 115)

Congenital Hypothyroidism

- Optimal thyroid hormone levels are critical for normal neurodevelopment
- Untreated congenital hypothyroidism can produce profound somatic and neurologic delay

- Albert, et al., 2013, p. 36-64

Congenital Hypothyroidism

 One of the most common preventable causes of mental retardation in the world

- Huang, 2010, p. 115

 When treatment is initiated early (preferably within the first 14 days of life) and sustained, it is believed that children will have normal developmental outcomes

- Balhara, Misra, and Levitsky, 2011, p. 536

Congenital Hypothyroidism

- 17 year old female with untreated congenital hypothyroidis
- Average height of a 3 year old and estimated bone age of 9 months

From Brent, G., Davies,
 T., Larsen, P., 2007

Congenital Adrenal Hyperplasia 21-Hydroxylase Deficiency

- A family of inherited disorders affecting the adrenal gland's ability to produce cortisol
- Most common form is 21hydroxylase deficiency
 - -90-95% of cases
- Inherited in an autosomal recessive pattern

Congenital Adrenal Hyperplasia 21-Hydroxylase Deficiency

- Reported incidence ranges from 1:5,000 – 1:15,000
- Clinical presentation varies from mild to severe

Congenital Adrenal Hyperplasia 21-Hydroxylase Deficiency Unaffected "Carrier" Father Unaffected "Carrier" Mother CARLIER" Chaffected I in 4 chance I in 4 chance Donohoue, 2010, p. 153-160

Common Forms of CAH 21-Hydroxylase Deficiency

- · Salt-losing
 - Also Salt-wasting or Classical
- Simple Virulizing
- Attenuated
 - Non-classical

Classical Salt-Wasting CAH 21- Hydroxylase Deficiency

- Severe to complete deficiency of 21-Hydroxylase
- Inability of the adrenal cortex to produce Cortisol or Aldosterone
- Results in adrenal crisis and maximal secretion of adrenal androgens
- Near total masculinization of external female genitalia in females

Classical Salt-Wasting CAH 21- Hydroxylase Deficiency

Simple Virulizing CAH 21-Hydroxylase Deficiency

- Incomplete or partial 21-Hydroxylase deficiency
- Results in increased ACTH production in order to normalize Cortisol levels

Simple Virulizing CAH 21-Hydroxylase Deficiency

- Increased levels of Cortisol precursors
 - -17-Hydroxyprogesterone, etc.
- Increased Aldosterone production, results in normal sodium balance

Simple Virulizing CAH 21-Hydroxylase Deficiency

 Increased androgen production, due to increased ACTH stimulation and partial enzyme blockage

Simple Virulizing CAH 21-Hydroxylase Deficiency

- Variable degrees of female masculinization present at birth
- If undiagnosed at birth, may develop signs of puberty at a very early age, or advanced somatic growth and skeletal age

Attenuated or Non-classical CAH

- Minimal 21-Hydroxylase deficiency
- No female masculinization present at birth
- Only small changes are noted in steroidogenesis

Attenuated or Non-classical CAH

- Changes typically develop in girls during puberty due to excess androgen secretion
 - Development of hirsuitism
 - -Severe acne
 - Menstrual irregularities
 - -Small ovarian cysts possible

Making the Diagnosis:
Congenital Hypothyroidism
and
Congenital Adrenal Hyperplasia

Congenital Hypothyroidism

- State Newborn Screening is optimally performed at 2 to 4 days of age
- Normal neonatal TSH surge occurs during the first hours of life
- Screens resulting in high TSH and low T4 are concerning for Congenital Hypothyroidism and warrant further attention

Benefits of Serum Lab Testing for TSH and Free T4

- Serum TSH and Free T4 confirm the diagnosis of congenital hypothyroidism
- Tests costs approximately \$90 \$200
- · No risk of unsatisfactory results
- Results are returned within 24 - 48 hours

Congenital Hypothyroidism Treatment Goals

- Levothyroxine 10-15 mcg / kg / day
- 37.5 50 mcg
- Tablet form only

Congenital Hypothyroidism Treatment Goals

 Recommend crushing tablet and mixing with a small amount of breast milk or formula each morning

- Rose and Brown, 2006, p. 2298

Congenital Adrenal Hyperplasia

 Newborn screening for CAH is designed to diagnose patients before adrenal crisis and avoid potential death

Congenital Adrenal Hyperplasia

- Major benefit is identification of males
- Moderately high rate of false positives in premature infants
 - New, Ghizzoni, and Lin-Su, 2009, p.235
- Occasional false negatives with mild variants

Confirming Classical CAH Abnormal Newborn Screening Results CAH > 150 Female with ambiguous genitalia Or Presence of hyponatremia (low Na*), hyperkalemia (high K*), and hypochloremia (low Cl*) in male or female Immediate Serum 17-Hydroxyprogesterone (17-OHP) level or Serum Adrenal Profile Panel (CAH-6) *Consult with Endocrinologist Recommended

Limitations of Newborn Screening for Congenital Adrenal Hyperplasia

- It is not always possible to determine the subtype of CAH based on screening alone
 - Genotyping after diagnosis recommended

Limitations of Newborn Screening for Congenital Adrenal Hyperplasia

- Many cases of the mild non-classical form will be missed
- Preterm infants have higher 17-OHP levels due to immaturity of the adrenal cortex

- Slaughter et al. 2010, p. 912-913

Repeating Newborn Screening Versus Serum Testing

- · Repeat Newborn Screening
 - Repeat required after abnormal results
 - Can delay diagnosis if collected incorrectly
 - -Takes longer to have results
 - Premature infants results less reliable

Repeating Newborn Screening Versus Serum Testing

- Serum Testing
 - -Serum 17 Hydroxyprogesterone
 - Cost \$50
 - Provides more accurate information for gestational age and weight

Repeating Newborn Screening Versus Serum Testing

- Can follow serial results and expect results to fall < 100 as baby gets older
- -Serum CAH 6b Panel
 - Cost about \$395
 - Improves diagnostic capabilities

Repeating Newborn Screening Versus Serum Testing

- -ACTH Stimulation testing with 0 - min CAH - 6b panel and 60 - min CAH - 6b panel
 - · Cost about \$790
 - Most comprehensive diagnostic information

Congenital Adrenal Hyperplasia Initial Treatment Goals

- · Classical Salt-Wasting CAH
 - Hydrocortisone (Cortef) 2mg/mL solution
 - -15 20 mg/m2/day

Congenital Adrenal Hyperplasia Initial Treatment Goals

- -Triple dose for stress
 - Fever >101
 - Injury
 - Illness

Congenital Adrenal Hyperplasia Initial Treatment Goals

- Fludrocortisone 0.1mg/mL solution
 - -0.05mg (0.5mL) PO BID
- NaCl Solution
 - -3 5 mEq/kg/day divided every3 hours

Congenital Adrenal Hyperplasia Initial Treatment Goals

- · Solu-Cortef 100mg/2mL
 - Give 25 50mg IM x 1 in the event of adrenal crisis

Congenital Adrenal Hyperplasia Initial Treatment Goals

- Classical Simple Virulizing CAH
 - Hydrocortisone (Cortef) 2mg/mL solution
 - 15 20 mg/m2/day

Congenital Adrenal Hyperplasia Initial Treatment Goals

- Triple dose for stress
 - -Fever >101
 - -Injury
 - -Illness

Congenital Adrenal Hyperplasia Initial Treatment Goals

- -Solu Cortef 100mg/2mL
- Give 25 50mg IM x 1 in the event of adrenal crisis
 - Surgery

Congenital Adrenal Hyperplasia Initial Treatment Goals

- · Repeated vomiting / diarrhea
- Unconsciousness

Case Studies: Presentation of Congenital Hypothyroidism

Children's of Alabama Newborn Screening Database: Data 2007-2013

- · Female patient
 - -38 weeks gestational age
 - -Birth weight 3430 grams
 - Healthy other than prolonged hyperbilirubinemia
 - Required 1 day re-admission to hospital for jaundice

Congenital Hypothyroidism: Case Study 1

- · Family History
 - 3rd biological child of mother and father
 - No family history of thyroid abnormalities

Congenital Hypothyroidism: Case Study 1

Initial Newborn Screening 1 day 20 hours: TSH >400 ulU/mL (<25) T4 1.7 mcg/dL

(5.1-30)

Serum Repeat 9 days TSH 571.79 mIU/mL (0.4-8.6) Free T4 0.3 ng/dL (0.8-1.8)

Treatment Started 9 days of life Levothyroxine 37.5mcg

Screening 14 days TSH 52.2 uIU/mL (<25) T4 14.7 mcg/dL (5.1-30)

Repeat Newborn

Congenital Hypothyroidism: Case Study 1

- Prolonged hyperbilirubinemia and elevated repeat NBS TSH
 - Increased Levothyroxine to 50mcg daily
- · Clinic visit
 - -3 weeks old
 - -TSH 1.89 uIU/mL (0.72 13)

Congenital Hypothyroidism: Case Study 1

- -Free T4 3.2 ng/dL (0.75 1.54)
- Decreased Levothyroxine to 44mcg daily
- Thyroid ultrasound
 - -6 months of age
 - No thyroid on ultrasound

- · Diagnosis based on initial NBS
- · Treatment started at 9 days of life
 - -Within goal of <14 days
- Family educated on disease process and therapy
- Therapy will be lifelong due to absence of thyroid gland

- · Hispanic Female Patient
 - -34 weeks gestational age
 - -Birth weight 2070 grams
 - Pregnancy complicated by untreated gestational diabetes
 - Mother's first pregnancy at 27 years of age

Congenital Hypothyroidism: Case Study 2

- Hospitalized in the NICU for
 1 month due to prematurity and feeding difficulties
- · No family history of thyroid problems

Congenital Hypothyroidism: Case Study 2

- Initial newborn screen collected:
 8 hours of life
 - -TSH >400 uIU/mL (<25)
 - -T4 1.8 mcg/dL (5.1-30)
- Repeat newborn screen collected:
 5 days of life
 - -Unsatisfactory

Congenital Hypothyroidism: Case Study 2

- Screen lab repeat collected: 5 days of life *diagnosis confirmed
 - -TSH 640uIU/mL (0.46- 13.0)
 - -Free T4 0.14 ng/dL (0.75-1.54)

Congenital Hypothyroidism: Case Study 2

- Repeat newborn screen collected:
 17 days of life
 - -TSH 34.2 uIU/mL (<25)
 - -T4 14.8 mcg/dL (5.1-30)

- Repeat newborn screen collected:
 31 days of life
 - -TSH <3.0 uIU/mL (<25)
 - -T4 13.7 mcg/dL (5.1-30)

- Prior to hospital discharge an appointment was made with Pediatric Endocrinology
- Mom was unclear of instructions and did not come to the appointment
- Family's address changed from that listed on the newborn screen

Congenital Hypothyroidism: Case Study 2

- Appointment was rescheduled and family was notified by letter as phone number no longer worked
- A care coordinator referral was placed
- Family no-show for second appointment

Congenital Hypothyroidism: Case Study 2

- Primary care physician saw patient in the interim and discontinued Levothyroxine due to suppressed TSH
- Transportation needs were arranged and patient came for follow-up at 3 months of age

Congenital Hypothyroidism: Case Study 2

- Initial appointment with Pediatric Endocrinology
 - -3 months of age
 - -TSH 133.2 (0.36 8)
 - -Free T4 0.48 ng/dL (0.75 1.54)
 - -Thyroid ultrasound
 - No identified thyroid

Congenital Hypothyroidism: Case Study 2

- -Thyroglobulin < 0.2 ng/mL
- -Large anterior fontanelle
- -No jaundice
- -Umbilical hernia
- -Slight hypotonia
- -Constipation per report

- Restarted Levothyroxine 37.5 mcg
 PO daily
- Provided education via interpreter to mother and father
- Followed labs monthly until consistently normal

- Initially diagnosed and treated within 5 days of life (<14 days)
- TSH normalized within first weeks of treatment
- · Lost to follow-up
 - Phone number changed
 - -Address changed

Congenital Hypothyroidism: Case Study 2

- -Transportation issues
- Language barrier
- Medication stopped by primary care physician
 - No contact with PMD because this was not listed on newborn screen or identified by OSH

Congenital Hypothyroidism: Case Study 2

- Untreated for several weeks prior to restart of therapy
- Some mild clinical manifestations of hypothyroidism noted on review of systems and exam

Congenital Hypothyroidism: Case Study 3

- · Caucasian Female
 - -38 weeks gestational age
 - -Birth weight 3374 grams
 - Mothers 4th pregnancy at 20 years of age
 - -Well-baby
 - · Discharged home 1 day after birth

Congenital Hypothyroidism: Case Study 3

 Family history is negative for thyroid problems in the mother, father, and half-siblings

- Diagnosis based on abnormal second newborn screen with abnormal serum labs
- Treatment initiated at 37.5 mcg
 PO daily
 - -Day 45 of life

Congenital Hypothyroidism: Case Study 3

- Provided education packet to PMD to give to mother
- Followed with pediatric endocrinology
 - -10 weeks old
 - 4 weeks after initiation of treatment

Congenital Hypothyroidism: Case Study 3

- TSH 215.41 mIU/mL (0.46 8.10)
- Free T4 0.31 ng/dL (0.75 1.54)

Congenital Hypothyroidism: Case Study 3

- Mom reports not giving medication
 - "Because I do not believe there is anything wrong with her"
- · Review of systems
 - Constipation
- Physical exam
 - -Normal tone

Congenital Hypothyroidism: Case Study 3

- -No hernia
- -No jaundice
- Anterior fontanelle soft / flat normal size
- -Posterior fontanelle closed
- Education provided

- Labs followed monthly under close supervision
 - Multiple calls to mother unanswered
 - Social services consultation for possible medical neglect

- Diagnosis delayed due to late rise in TSH
- Treatment not given due to perceived health of baby
- Developmental delay more likely due to prolonged untreated hypothyroidism

Congenital Hypothyroidism: Diagnostic Pearls

 Repeat newborn screening accounts for ~12% of diagnosed cases of primary congenital hypothyroidism

- Shapira, 2012

 Serum labs for TSH and Free T4 are diagnostic

Congenital Hypothyroidism: Diagnostic Pearls

 TSH >10 for over 2 - 3 weeks of age is diagnostic regardless of Free T4 levels

- Balhara, Misra, and Levitsky, 2011, p. 533

It is important to treat elevatedTSH levels early

Congenital Hypothyroidism: Diagnostic Pearls

- Decision to stop therapy can be made later when developmental delay is less of a risk
- · Parent education is critical
 - Provide education as early as possible on the importance of continued therapy

Congenital Hypothyroidism: Diagnostic Pearls

 Provide education that congenital hypothyroidism is often a "silent" diagnosis Case Studies:
Presentation of
Congenital Adrenal
Hyperplasia

- Male Patient
 - Born at 36 weeks 2 days gestational age
 - -Date of birth: 11/30
 - -Birth weight: 2892 grams

CAH: Case Study 1

- -NICU
 - Hospitalized for 1-1/2 months following delivery
- Initially had respiratory distress, poor perfusion, hypotension, cleft palate

CAH: Case Study 1

- Developed hyponatremia,
 hyperkalemia, abnormal EEG, and
 prolonged hemodynamic instability
- No family history of precocious puberty, short stature, adrenal problems, infertility, etc.
- First biological child of mother and father

CAH: Case Study 1

- Two half brothers biologically belonging to the father
- Half brothers healthy with no early puberty or other concerns

CAH: Case Study 1

- Newborn Screening History
 - -Initial NBS sent on first day of life
 - CAH 33.2 ng/mL (<45 ng/mL)
 - -Repeat NBS sent on 12/7
 - · 7 days of age
 - Unsatisfactory screen

- -Third NBS sent on 12/18 (18 days of age) due to unsat 2nd screen
 - CAH >150 ng/mL (<25 ng/mL)
- Serum testing (CAH-6) also sent on 12/18 due to continued clinical concern
 - Hyponatremia, hyperkalemia, and hypotension

- Serum CAH-6 Screening
 - -17-Hydroxyprogesterone 39,200 ng/dL (40 200)
 - -Cortisol <1.0 mcg/dL (2 11)
 - -Testosterone 255 ng/dL (75 400)
 - -17-Hydroxypregnenolone 3,960 ng/dL (<10 - 279)
 - -Progesterone 1,040 ng/dL (<10-15)

CAH: Case Study 1

- Serum Electrolytes
 - -Na 123 mmol/L (134 143)
 - -K 5.6 mmol/L (3.5 5.6)

CAH: Case Study 1

- Endocrinology consulted by NICU physician as soon as CAH-6 screen showed significant 17-OHP elevation
 - -Hydrocortisone started on day of life 20
- Prolonged hyponatremia after initiation of Hydrocortisone

CAH: Case Study 1

- Fludrocortisone started on day of life 27
- Scheduled NaCl supplements started on day of life 27
- Karyotype normal 46XY male
- Initial evaluation with endocrinology 1/17

- Final diagnosis:
 - Classical Salt Wasting CAH
- -Plan
 - Send genetic evaluation for CYP21A2 gene mutations and large gene deletions when
 - > 1 year of age

- Female Patient
 - Born at 36 weeks 4 days gestational age
 - -Date of birth: 7/1
 - -Birth weight: 6 pounds, 11 ounces
 - -Birth length: 18.75 in.

CAH: Case Study 2

- -Well baby
 - Hospitalized for 2 days following delivery
- No family history of precocious puberty, short stature, adrenal problems, infertility, etc.

CAH: Case Study 2

- Newborn Screening History
 - -Initial NBS sent at 2 days of age
 - CAH 13.7 ng/mL (<45 ng/mL)
 - -Repeat NBS sent on 8/8
 - · 39 days of age
 - CAH 66.1 ng/mL (<25 ng/mL)

CAH: Case Study 2

- -Third NBS sent on 8/22 (52 days of age) due to abnormal 2nd screen
 - CAH >150 ng/mL (<25 ng/mL)
- Endocrinology received newborn screen results on 8/28
 - -58 days of age
 - Mother and PMD notified of results

CAH: Case Study 2

- Patient evaluated in clinic on 8/29
 - -59 days of age

- Physical Exam
 - Healthy appearing 2 month old bi-racial female
 - First child of biological mother and father
 - No genital ambiguity or clitoromegaly
 - -No history of illness

- Lab Evaluation
 - -Cortrosyn (ACTH) Stimulation Test:
 - · Baseline:
 - -17-Hydroxyprogesterone 1,988 ng/dL (11 - 170)
 - -Cortisol 2.3 mcg/dL (3 22)

CAH: Case Study 2

- 60 Minute Stimulated (125 mcg of ACTH IM)
 - -17-Hydroxyprogesterone 20,030 ng/dL (85 250)
 - -Cortisol 11.2 mcg/dL (27 50)
- -Electrolytes
 - Na 141 mmol/L (134 143)

CAH: Case Study 2

- K 5.5 mmol/L (3.5 5.6)
- -CAH-11 Urine Studies
 - Increased steroid ratios suggestive of 21-Hydroxylase Deficiency

CAH: Case Study 2

- · Presumptive Diagnosis
 - -Non Classical CAH
 - -No ambiguous genitalia
 - Knew she had the ability to produce Cortisol when "stressed" although response was borderline

- Plan
 - Continue to follow closely for growth and puberty
 - Repeat Cortrosyn stimulation testing in the future due to borderline Cortisol response
 - Send genetic screening for common CYP21A2 mutations when she is a little older

- · Follow-up testing
 - -Genetic screening
 - One gene with a large mutation called P30L, and
 - One gene with a large gene conversion referred to as the 30kb deletion

CAH: Case Study 2

- Resulting in a non-functional gene product
- No normal copy of CYP21A2 gene

CAH: Case Study 2

- · Final diagnosis
 - -Classical Simple Virilizing CAH
- Started Cortef at 18mg/m2/day maintenance
- Educated on stress dosing and adrenal crisis Solu-Cortef injection

Diagnostic Pearls

 Repeat newborn screening is CRITICAL in making the diagnosis of CAH

Diagnostic Pearls

- Serum 17-Hydroxyprogesterone levels are crucial for making the diagnosis of CAH
 - If concern over an abnormal screen in an otherwise stable premature baby, start with serum 17-OHP

Diagnostic Pearls

- If concern of hypotension, hyponatremia, and hyperkalemia or ambiguous genitalia, send the CAH-6b panel
- If unsure about diagnosis following an abnormal NBS in a stable fullterm child with no other clinic concerns, consult endocrinology for Cortrosyn stimulation testing

Diagnostic Pearls

- CAH levels
 (17-Hydroxyprogesterone) should decrease with time
 - If increasing this could indicate an abnormality
 - New, Ghizzoni, and Lin-Su, 2009, p.235

Diagnostic Pearls

- There will be patients with nonclassical CAH who are missed by screening and identified later in life due to early growth spurt or precocious puberty
- A CAH-6b panel can be a helpful diagnostic screening tool for these patients

Long-Term Follow-Up:
The Benefits and Challenges
of Continuation of Care for
Congenital Hypothyroidism
and
Congenital Adrenal Hyperplasia

Congenital Hypothyroidism Long-Term Care

- Frequently, up to 85% of patients remain on treatment for life
- In our experience, as many as 20% of patients are lost to follow-up within first 3 years of life
 - -Why?

Congenital Hypothyroidism Long-Term Care

- Education
 - -Initial diagnosis education
 - Continued review of importance of daily therapy
 - Continued review of importance of lab monitoring

Congenital Hypothyroidism Long-Term Care

- Reduced stressing that some patients have that come off therapy
- Frequent labs
 - Encouraged compliance with labs every 1-2 months for first year of life

Congenital Hypothyroidism Long-Term Care

- Review labs every 4 months for second year of life
- Review labs every 6 months for the remainder of life
- Appointment compliance

Congenital Hypothyroidism Long-Term Care

- Need to be seen by endocrinologist every 4-6 months for remainder of therapy
- · Frequent phone contact
 - Maintaining accurate phone contact information

Congenital Hypothyroidism Long-Term Care

 Maintaining contact with families to provide education and answer any therapy related questions

Congenital Adrenal Hyperplasia Long-Term Care

- Treatment is lifelong and often multidisciplinary
- Education
 - Information regarding disease process

Congenital Adrenal Hyperplasia Long-Term Care

- Information regarding therapy, often complex with medication administration every 3 hours for the first years of life
- Stress dose teaching for Hydrocortisone

Congenital Adrenal Hyperplasia Long-Term Care

- Information regarding adrenal crisis and demonstration of Solu-Cortef injections
- Review importance of consistent dosing and frequent lab monitoring
- · Lab monitoring

Congenital Adrenal Hyperplasia Long-Term Care

- Monitor 17-OHP, Na, K, Renin frequently for the duration of therapy
- · Appointment compliance
 - Need to be followed by pediatric endocrinologist every 3-6 months

Congenital Adrenal Hyperplasia Long-Term Care

- Will need to transition to adult care at 18 years of age
- · Frequent phone contact
 - Contact maintained with families to answer any questions, review stress dosing as needed, etc.

Congenital Adrenal Hyperplasia Long-Term Care

- · Support services
 - Many families seek out support services due to rarity of condition and complex nature of disease process

Frequently Asked Questions: Endocrinology Newborn Screening

Frequently Asked Questions Congenital Hypothyroidism

- · When should I do serum labs?
 - If newborn screen is abnormal, a serum TSH and Free T4 will be diagnostic for congenital hypothyroidism

Frequently Asked Questions Congenital Hypothyroidism

- What if the TSH is elevated but the Free T4 is normal?
 - You can recheck the TSH and Free T4 in 1-2 weeks, if this trend continues with TSH >10 for more than 2 weeks, we would recommend treatment with Levothyroxine

Frequently Asked Questions Congenital Hypothyroidism

- If I send serum labs and they have normal results, do I need to recheck them?
 - No, if you have a normal TSH and Free T4 it is unlikely that it will become abnormal

Frequently Asked Questions Congenital Hypothyroidism

 However, you should send repeat newborn screening as recommended by the ADPH

Frequently Asked Questions Congenital Hypothyroidism

 I have a patient you see for congenital hypothyroidism. Should I alter the Levothyroxine dosing based on labs done at my clinic?

Frequently Asked Questions Congenital Hypothyroidism

- No, please just ensure that all serum labs are faxed to our offices and we will change the Levothyroxine dose as indicated
- You can always call our offices if you have any clinical concerns regarding a mutual patient

Frequently Asked Questions Congenital Adrenal Hyperplasia

- What should I do with abnormal CAH levels in a premature infant?
 - In an otherwise stable premature baby send serum 17-OHP levels
 - If elevated, may contact our offices to discuss

Frequently Asked Questions Congenital Adrenal Hyperplasia

 Likely, we will ask that you follow these levels every 1-2 weeks to follow trends

Frequently Asked Questions Congenital Adrenal Hyperplasia

- Should education be provided on stress dosing and Solu-Cortef before hospital discharge?
 - Yes, please contact our offices for education materials

Frequently Asked Questions Congenital Adrenal Hyperplasia

 If you can provide general information for parents we will discuss this in more detail at the initial clinic visit

Frequently Asked Questions Congenital Adrenal Hyperplasia

- When is a Cortrosyn Stimulation Test indicated?
 - When the CAH levels are elevated in an otherwise stable, full-term infant with normal sodium and potassium levels
 - Borderline results in premature infants

Frequently Asked Questions Congenital Adrenal Hyperplasia

 Also, in a young child with premature adrenarche / puberty, when there is a question of non-classical CAH

Frequently Asked Questions Congenital Adrenal Hyperplasia

When should I send the CAH-6b panel?

Frequently Asked Questions Congenital Adrenal Hyperplasia

If you are concerned about an infant with hyponatremia, hyperkalemia, hypotension, or ambiguous genitalia send the CAH6-b panel as soon as possible regardless of CAH newborn screening

Children's of Alabama: Endocrinology Newborn Screening Resources

Newborn Screening Resources

- · Patient Education available online
 - https://www.childrensal.org/NewbornScreening
 - Congenital Hypothyroidism "Parents Guide"
 - -CAH-CARES Foundations

Newborn Screening Resources

- Patient Education Packets can be mailed or faxed to PMD office or patient directly
- Consultation available anytime for clinical questions or concerns:
 - -205 996 9166 or 205 638 9107
 - newbornscreening@peds.uab.edu

Newborn Screening Resources

- If parent has questions prior to appointment or if social services are needed for appointment, the parent may contact our offices at 205 - 996 - 9166
- We encourage PMDs to ask families if social services are needed

Newborn Screening Resources

 Working to develop video education material for congenital hypothyroidism and congenital adrenal hyperplasia, including stress dosing and Adrenal Crisis / Solu-Cortef teaching

