SCIDs: Curative Role of Allogeneic Hematopoietic Stem Cell Transplant

Satellite Conference and Live Webcast Tuesday, August 23, 2016 2:00 – 3:30 p.m. Central Time

Produced by the Alabama Department of Public Health Video Communications and Distance Learning Division

Faculty

Fred Goldman, MD
Professor of Pediatrics, UAB
Director, Pediatric Blood and
Marrow Transplant Program
Children's of Alabama

Disclosures

- Jazz Pharmaceuticals
 - -Scientific advisory board
- GLG
 - -Medical consultant

Typical Presentation for SCIDs (in the early days)

- 4 month old male with respiratory distress
- · Chronic URI / Otitis
- · RSV pneumonia at 2 weeks of age
- Feeding difficulties, formula intolerance, diarrhea

Typical Presentation for SCIDs (in the early days)

- Birth and family history unremarkable
- PE with marked FTT, eczema, wheezing
- Labs
 - -"Normal" CBC (except total absolute lymphocyte count = 400)
 - -Low serum IgG, IgM, IgA
 - ->90 % B cells, absent T cells
 - -Bronchoscopy revealed PCP

Severe Combined Immune Deficiency per Pediatric Immune Deficiency Transplant Consortium

- Classic SCID criteria
 - 1) Absent or very low T cell count (<300 / ul, normal is >1000)

Severe Combined Immune Deficiency

2) No or very low T cell function (<10% of lower limit of normal) as measured by response to mitogen PHA

OR

T cells of maternal origin

Common features of Primary Immunodeficiency

- Failure to thrive
 - -Weight, height < 5%
- Diarrhea
- Neurological deficits
 - -Loss of mile stones
 - Developmental delays

Common features of Primary Immunodeficiency

- Skin and nail abnormalities
 - -Eczema, atopia
 - -Candidiasis
 - -Thrush, diaper dermatitis

Clinical Features of Primary Immunodeficiency

- Infections
 - -Recurrent
 - What is normal?
 - -<10 in first year of life
 - -Severe or invasive
 - -Viral URI
 - RSV, parainfluenza

Clinical Features of Primary Immunodeficiency

- -Unusual / opportunistic
 - Fungus, i.e. aspergillus
 - Atypical bacteria
 - -Mycobacterium
 - -Histoplasmosis
 - -Pneumocystis carinii

Laboratory Data

- Lymphopenia (low ALC)
 - -Absent T cells, +/- B cells
- T cell function absent
 - Poor mitogen responses or recall to immunization
- Low / absent serum immunoglobulin
 - IgG level may be maternal!!!

History of BMT and SCIDs

- Prior to 1968, every child born with SCIDs died
- First successful allogeneic BMT ever performed was for SCID in Minnesota in 1968

History of BMT and SCIDs

- -5 month old male with "sex linked lymphopenic hypogammaglobulinemia"
- Brother died from SCIDs
- Received MLC compatible bone marrow from sister
- Graft vs host disease
- Alive today

SCIDS- "Bubble boy" disease David Phillip Vetter September 21, 1971 – February 22, 1984

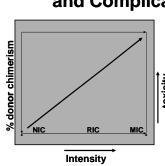
- X linked SCIDS
- Diagnosed by family
- Confined to bubble at advise of MD at **Baylor**
- Extreme depression and behavior issues due to isolation
- **Underwent BMT at** age 13 and died of 3 months later

Transplant Phases and Complications

• Post engraftment

- 1-12 month

- Graft vs host


- Viral reactivation

disease

- Preparative Therapy - days -10 to 0

 - Nausea from chemo
- Pre / early engraftment
- Days 0-30
- Organ toxicity of chemo
- Mucositis
- Infections due to low WBC

Transplant Phases and Complications

- Myeloablative conditioning (MIC)
 - Counts drop out completely
- conditioning (RIC)

 Counts drop but toxicity Reduced intensity
 - Counts drop but less toxicity
- · Non myeloablative conditioning (NIC)
 - Counts may not drop, goal to achieve partial chimerism

Supportive Care Anticipatory Guidelines for SCIDs

- No live viral vaccines
 - -Rotavirus or varicella can disseminate in immune compromised host
- · Avoid contact with sick persons and young children

Supportive Care Anticipatory Guidelines for SCIDs

- Culture for pathogens, including viral
 - -Nasal swab for VRP
 - -Blood for CMV, Toxo, Adeno,
 - -Consider bronchoscopy
- Avoid breast feeding (CMV transmission)

Supportive Care Anticipatory Guidelines for SCIDs

- Transfuse only with irradiated, leukodepleted blood products
 - Prevent transmission of CMV and Graft vs host disease
- House in protected environment on BMT unit

Supportive Care Anticipatory Guidelines for SCIDs

- -Initiate Bactrim immediately
 - PCP is primary cause of death of SCIDs patients
- -Intravenous immunoglobulin
- Liberal use of broad spectrum antibiotics

HSCT Transplant Workup

- Early referral to transplant center optimal
- Arrange tissue typing for donor identification
 - -Blood sent to the tissue typing lab
 - Family members, sibs typed
 - Search the National Marrow Donor Program data base

HSCT Transplant Workup

- · Pre transplant testing
 - -Organ function assessment
 - -Serologies (maternal)
 - -Infection workup
 - Social work and neuropsyche team to help with financial assistance, coping, and family issues

Factors Affecting Transplant Outcome in SCIDs

- Age of patient
 - Transplants done early, within the first few months of life, associated with best outcome
 - -Reason NBS is so important!

Factors Affecting Transplant Outcome in SCIDs

- Infections
 - Lack of opportunistic or severe infection or ventilator support associated with best outcome
- SCID phenotype
 - Omenns, Reticular dysgenesis worst

Factors Affecting Transplant Outcome in SCIDs

- · HLA match and donor source
 - Matched sibling best
 - Haplo vs cord vs MUD ~
 similar outcome
- Pre transplant care

Should We Be Considering Cord Blood as Donor Source in SCID?

- Over 20,000 cord blood transplants performed to date
- · Donor pool is expanding
 - Over 590,000 potential donor cords frozen
- Several advantages of cord blood transplant versus bone marrow

Cord Blood Advantages

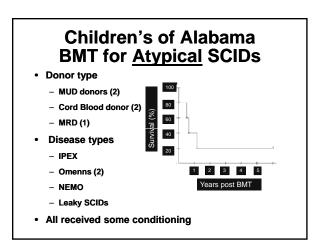
- No need for perfect HLA match (6 / 6)
 - Easier to find match for minorities
- · Rapid turn-around time
 - Cord blood search and delivery1 week
 - Bone marrow search, donor work up, confirmation of tissue typing, harvest, delivery = 2 months (avg)

Cord Blood Advantages

- · Less risk to donor
 - Cord blood donation is noninvasive, painless and risk - free for the mother and infant
 - Bone marrow donation requires a general anesthesia to harvest bone marrow

Cord Blood Disadvantages

- Higher incidence of post transplant viral infections
- Increase in autoimmune cytopenia post transplant
- No availability of same donor for stem cell boost
- Donor history incomplete


Current Controversies in SCIDs and BMT

- What is the best donor in the absence of a matched related donor
 - Matched unrelated donor-delays in getting marrow collected
 - Haplo-identical donor- T cell depletion, delays in immune reconstitution
 - Cord blood donor- delay in immune recovery due to small number of T cells in graft

Current Controversies

- Should we be doing chemo / immuno ablation preparative therapy
 - Those that get chemo are more likely to <u>fully engraft</u> and be weaned off IVIG
 - Chemo has long term side effects, including sterility

Children's of Alabama BMT for Typical SCIDs • Donor type - MUD donors (7) - Haplo donors (3) - Cord Blood donor (2) - MRD (1) • One death - Patient was extremely sick with PCP and RSV on arrival to hospital, on ventilator within 3 days. Received a cord blood transplant while on ventilator

Summary

- Diagnosing SCIDs by NBS is feasible and will save lives!
- Early referral of a SCIDs patient to an experienced center is crucial
- BMT for SCIDs should be done early for optimal results
- New approaches to standardizing transplant for SCIDs patients is on the horizon