

Terri Magruder, MD, MPH

GINA 2025

- WHO and NHLBI collaborated to develop GINA in 1993
- It is a global evidenced based strategy that can be adapted for local health systems
 - Careful attention to study design, population and clinical relevance
- Updated annually
- Resource: https://ginasthma.org/pocket-guide-for-asthma-managementand-prevention/

Common themes of GINA and NHLBI are chronic disease management, shared decision-making, and movement towards combining ICS with SABA or Formoterol for quick relief

• Proud to be celebrating the 30th year of GINA •

Key Updates

- Type 2 Biomarkers
- Personalized Treatment
- Reinforcing shift away from bronchodilators alone
- Difficult to treat/Severe asthma
- Treatment of exacerbations

Type 2 Biomarkers

- Role of Type 2 Biomarkers
 - Blood eosinophils
 - FeNO: fractional exhaled nitrous oxide
 - > 50ppb for adults and >35ppb for children
- Role
 - Support diagnosis, but don't rule in or out asthma
 - Identify high-risk patients
 - Determine next steps in treatment

Population-level vs patient-level treatment decisions

Choosing between treatment options at a population level

(e.g., national formularies, health maintenance organizations, national guidelines)

The 'preferred' medication at each step is the best treatment for most patients, based on:

Mainly based on evidence about symptoms and exacerbations (from

randomized controlled trials, pragmatic studies and strong observational data)

Population-level availability and cost

There are different population-level recommendations by age-group (adults/adolescents, children 6–11 years, children 5 years and younger). For patients with severe asthma, there are also different population-level recommendations depending on the inflammatory phenotype.

Choosing between controller options for individual patients

Use shared decision-making with the patient or parent/caregiver to discuss the following:

1. Preferred medication

 What is the best medication for symptom control and risk reduction (as above)?

2. Patient characteristics or phenotype

 Does the patient have any factors that predict differences in risk or treatment response, compared with other patients, e.g., smoking; SABA over-use; exacerbation history; high FeNO or eosinophils; environmental exposures; comorbidities?

3. Patient views

 What are the patient's goals, beliefs and concerns about asthma and its treatment?

4. Practical issues

For the preferred medication(s), which inhalers are available to this patient?

· Can they use the inhaler correctly after training?

· Can they afford the medication?

 Adherence – how often are they likely to take the medication?

 If more than one inhaler is suitable for the patient, which has the lowest environmental impact?

FeNO: fractional exhaled nitric oxide; SABA: short-acting beta₂-agonist

Personalized asthma management

- Building relationships and shared decision making
- Action plans provide standardization and consistent messaging from visit to visit
- Patient education is the key to getting the treatment plan in action
 - Prioritize medications, simplify plans
 - Be clear about medication use and expectations for treatment
 - Use Teach Back method to confirm understanding
 - Device education and review important at all visits
 - Using pictures to explain medication or asthma disease concepts
- Scheduled follow up visit and standardized disease control assessment
 - Validated questionnaires ACT and/or ACQ recommended
- School forms
- Review, Assess, Adjust
 - Adherence needs to be addressed at all visits
 - Normalize non-adherence to create an open environment to discuss medications and patient concerns

Why not treat with inhaled short-acting beta₂-agonists (SABA) alone?

- People with apparently mild asthma can have severe or fatal exacerbations (Dusser et al, 2007)
- Even 4–5 lifetime OCS courses increase the cumulative risk of adverse events including osteoporosis, diabetes, cataract, heart failure, pneumonia (Price et al, J Asthma Allerg 2018)
- Regular use of SABA for 1–2 weeks is associated with increased airway hyperresponsiveness, reduced bronchodilator effect, increased allergic response, increased eosinophils (e.g. Cockcroft 2006) → vicious cycle of increasing use
- SABA over-use is associated with ↑ exacerbations and ↑ mortality (e.g. Suissa 1994, Nwaru 2020)
- Starting treatment with SABA trains the patient to regard it as their primary asthma treatment
 - → Poor adherence with ICS is almost inevitable

There is strong evidence for a more effective and safer alternative: as-needed ICS-formoterol

Diagnosis of asthma in children aged 5 years and younger

Recurrent acute wheezing episodes

OR

At least 1 acute wheezing episode with asthma-like symptoms between episodes 2

No likely alternative cause for the respiratory symptoms

Timely clinical response of respiratory symptoms or signs to asthma medications

Any of:

- Short-term response to SABA within minutes during acute wheezing episode in healthcare setting (or, for more severe episode, within 3-4 hours after SABA and OCS started)
- Short-term response to SABA at home (within minutes)
- Reduced frequency or severity of acute wheezing episodes and/or of symptoms between episodes during 2–3 months' trial of daily ICS

All three criteria are needed for the diagnosis of asthma in children 5 years and younger

Acute wheezing episode: symptoms such as wheezing on expiration, accessory muscle use, or difficult, fast or heavy breathing, lasting for more than 24 hours

Asthma-like symptoms between episodes (also called interval symptoms): symptoms such as dry cough or wheeze after running, laughing or crying, or during sleep, that occur between acute wheezing episodes

If only 1 or 2 criteria are met, describe as 'suspected asthma', and continue follow-up

A personal or family history of allergic disease may strengthen the diagnosis of asthma, but is not required, and is not specific for asthma

GINA 2025 Children 5 years and younger

Personalized asthma management:

Assess, Adjust, Review response

Symptoms
Exacerbations
Side-effects
Comorbidities
Lung function
Child and parent/caregiver satisfaction

Exclude alternative diagnoses

Symptom control & modifiable risk factors Comorbidities
Inhaler technique & adherence

Child and parent/caregiver preferences and goals

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications Education & skills training

Asthma medication options:

Adjust treatment up and down for individual child's needs

PREFERRED CONTROLLER CHOICE

Other controller options (limited indications, or less evidence for efficacy or safety)

RELIEVER

CONSIDER
THIS STEP FOR
CHILDREN WITH:

(Insufficient evidence for daily controller)

STEP 1

Consider intermittent short course ICS at onset of viral illness

STEP 2

Daily low dose inhaled corticosteroid (ICS) (see Box 11-3 for ICS dose ranges for pre-school children)

Daily leukotriene receptor antagonist (LTRA†), or intermittent short course of ICS at onset of respiratory illness

STEP 3

Double 'low dose' ICS (See Box 11-3)

Consider specialist referral

As-needed short-acting beta2-agonist

Infrequent acute (e.g viral-induced) wheezing episodes and no or minimal interval asthma symptoms Asthma symptoms not well-controlled (Box 11-1), or one or more severe exacerbations in the past year

Asthma not well controlled on low dose ICS

Asthma not well controlled on double ICS

STEP 4

Continue

controller & refer

for specialist

assessment

Before stepping up, check for alternative diagnosis and inhaler skills, review adherence and exposures

ICS: inhaled corticosteroid; LTRA: leukotriene receptor antagonist (†advise about risk of neuropsychiatric adverse effects; SABA: short-acting beta₂-agonist

GINA 2025 Children 6-11 years

Personalized asthma management:

Assess, Adjust, Review

Symptoms
Exacerbations
Side-effects
Comorbidities
Lung function
Child and parent/caregiver satisfaction

Confirmation of diagnosis if necessary
Symptom control & modifiable risk factors
Comorbidities
Inhaler technique & adherence
Child and parent/caregiver preferences and goals

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications including ICS Education & skills training, action plan

Asthma medication options:

Adjust treatment up and down for individual child's needs

STEP 1

Low dose ICS

SABA taken*

taken whenever

PREFERRED CONTROLLER

to prevent exacerbations and control symptoms

Other controller options (limited indications, or less evidence for efficacy or safety)

RELIEVER

STEP 2

Daily low dose inhaled corticosteroid (ICS) (see table of ICS dose ranges for children)

Daily leukotriene receptor antagonist (LTRA†), or low dose ICS taken whenever SABA taken*

STEP 3

Low-dose ICS-LABA, OR medium-dose ICS, OR very lowdose ICS-formoterol maintenance and reliever (MART)*

Low dose ICS + LTRA[†]

STEP 4

ICS-LABA, OR low-dose ICSformoterol MART* OR refer for expert advice

Medium-dose

Add tiotropium or add LTRA†

assessment ± higher dose ICS-LABA or add-on therapy, e.g. LAMA, anti-IgE, anti-IL4Rα, anti-IL5

STEP 5
Refer for phenotypic

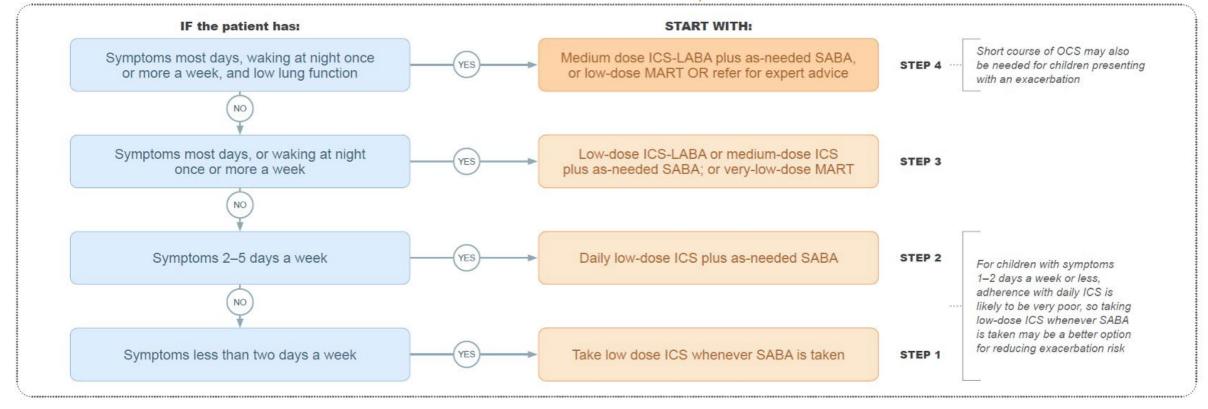
Only as last resort, consider add-on low dose OCS, but consider side-effects

As-needed SABA (or ICS-formoterol reliever* in MART in Steps 3 and 4)

ICS: inhaled corticosteroid; Ig: immunoglobulin; IL: interleukin; LABA: long-acting beta-agonist; LTRA: leukotriene receptor antagonist (†advise about risk of neuropsychiatric adverse effects; MART: maintenance-and-reliever therapy with ICS-formoterol; OCS: oral corticosteroid; SABA: short-acting beta-agonist

GINA 2025 – STARTING TREATMENT

in children aged 6-11 years with a diagnosis of asthma


Symptoms
Exacerbations
Side-effects
Comorbidities
Lung function
Child and parent/
caregiver satisfaction

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors Comorbidities Inhaler technique & adherence Child and parent/caregiver preferences and goals

Asthma medications including ICS

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Education & skills training, action plan

ICS: inhaled corticosteroid; LABA: long-acting beta2-agonist; MART: maintenance-and-reliever therapy with ICS-formoterol; OCS: oral corticosteroid; SABA: short-acting beta2-agonist

GINA 2025 Adults & adolescents 12+ years

Personalized asthma management Assess, Adjust, Review for individual patient needs Symptoms
Exacerbations
Side-effects
Comorbidities
Lung function
Consider biomarkers
Patient (and parent/caregiver) satisfaction

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors Comorbidities Inhaler technique & adherence Patient (and parent/caregiver) preferences and goals

Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Asthma medications including ICS Education & skills training, action plan

TRACK 1: PREFERRED CONTROLLER and RELIEVER

Using ICS-formoterol as the reliever* reduces the risk of exacerbations compared with using a SABA reliever, and is a simpler regimen

STEPS 1-2

AIR-only*: low-dose ICS-formoterol as needed

STEP 3

MART* with low-dose maintenance ICS-formoterol

STEP 4 MART* with medium-dose maintenance ICS-formoterol

STEP 5

Add-on LAMA
Refer for assessment of phenotype. Consider trial of high-dose maintenance ICS-formoterol. Consider anti-IgE, anti-IL5/5R, anti-IL4Rα, anti-TSLP

RELIEVER: As-needed low-dose ICS-formoterol*

See GINA severe asthma guide

TRACK 2: Alternative CONTROLLER and RELIEVER

Before considering a regimen with SABA reliever, check if the patient is likely to adhere to daily controller treatment

STEP 1

Reliever only; if SABA, take ICS with each dose

STEP 2

Low dose maintenance ICS

STEP 3

Low dose maintenance ICS-LABA

STEP 4

Medium dose maintenance ICS-LABA

STEP 5

Add-on LAMA
Refer for assessment of phenotype. Consider trial of high-dose maintenance ICS-LABA. Consider anti-IgE, anti-IL5/5R, anti-IL4Rα, anti-TSLP

RELIEVER: as-needed ICS-SABA*, or as-needed SABA

Non-pharmacologic strategies include smoking cessation, physical activity, pulmonary rehabilitation, weight reduction, vaccinations (see text for more)

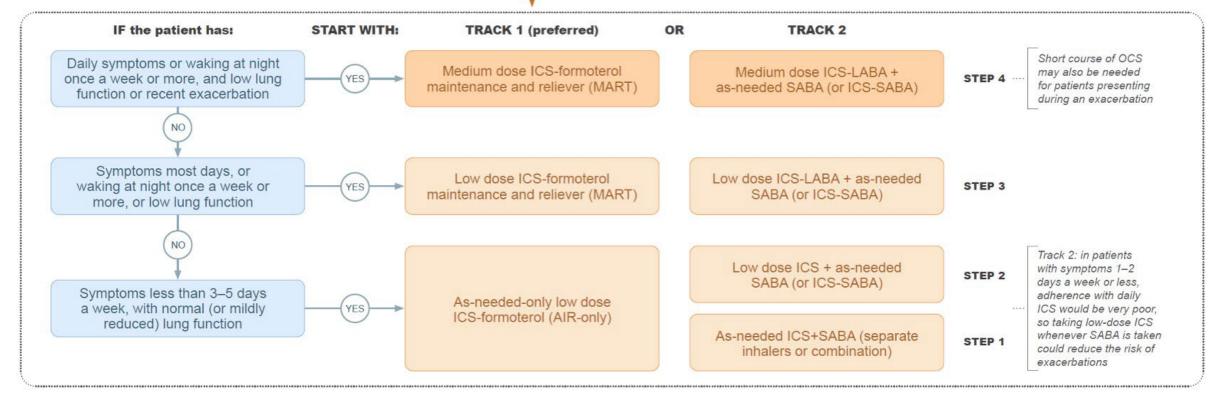
Allergen immunotherapy, e.g. HDM SLIT: consider for patients with clinically relevant sensitization and not well-controlled (but stable) asthma See text for further information and safety advice

Additional controller options (e.g., add-on LAMA at Step 4, add-on LTRA) have less evidence for efficacy or for safety than Tracks 1 or 2 (see text). Maintenance OCS should only ever be used as last resort.

AIR: anti-inflammatory reliever; HDM: house dust mite; ICS: inhaled corticosteroid; Ig: immunoglobulin; IL: interleukin; LABA: long-acting muscarinic antagonist; LTRA: leukotriene receptor antagonist; MART: maintenance-and-reliever therapy with ICS-formoterol; OCS: oral corticosteroid; SABA: short-acting beta₂-agonist; SLIT: subcutaneous immunotherapy; TSLP: thymic stromal lymphopoietin

GINA 2025 - STARTING TREATMENT

in adults and adolescents 12+ years with a diagnosis of asthma


Symptoms
Exacerbations
Side-effects
Comorbidities
Lung function
Consider biomarkers
Patient (and parent/
caregiver) satisfaction

ADJUST ADJUST

Confirmation of diagnosis if necessary
Symptom control & modifiable risk factors
Comorbidities
Inhaler technique & adherence
Patient (and parent/caregiver) preferences and goals

Asthma medications including ICS

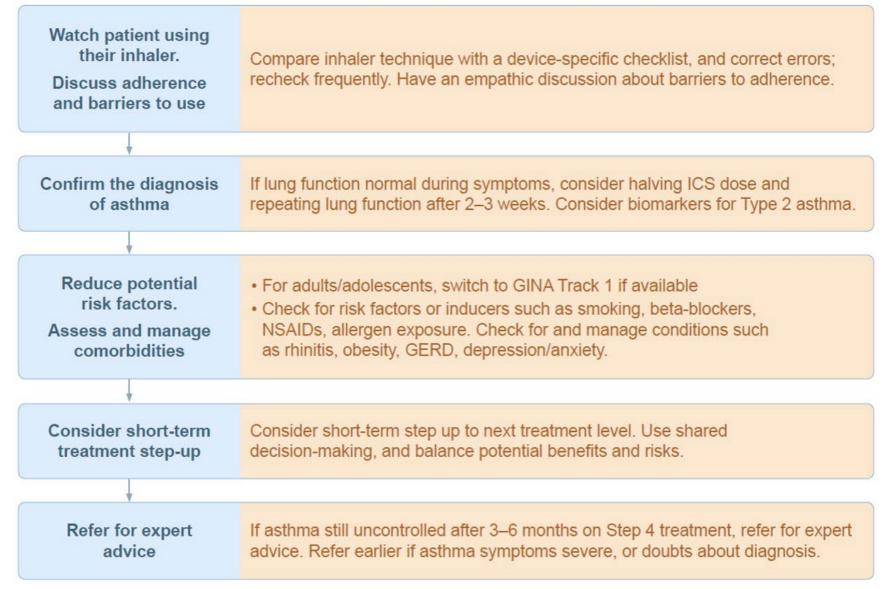
Treatment of modifiable risk factors and comorbidities Non-pharmacological strategies Education & skills training, action plan

AIR: anti-inflammatory reliever; ICS: inhaled corticosteroid; LABA: long-acting beta-gagonist; MART: maintenance-and-reliever therapy with ICS-formoterol; OCS: oral corticosteroid; SABA: short-acting beta-gagonist

Assessment of asthma control

Asthma control has **two** components

- A. Recent asthma symptom control
- B. Risk factors for poor asthma outcomes
 - Exacerbations
 - Persistent airflow limitation
 - Medication side-effects



Box 2-2. GINA assessment of asthma control at clinical visits in adults, adolescents and children 6-11 years

In the past 4 weeks, has the patient had:		Well controlled	Partly controlled	Uncontrolled
 Daytime asthma symptoms more than twice/week? 	Yes□ No□ ¬			
 Any night waking due to asthma? 	Yes□ No□	None of	1–2 of these	3–4 of these
 SABA† reliever for symptoms more than twice/week? 	Yes□ No□	these		
 Any activity limitation due to asthma? 	Yes□ No□			
B. Risk factors for poor asthma outcomes				
Assess risk factors at diagnosis and periodically, including	after an exacerb	ation.		
Measure FEV ₁ at start of treatment, after 3–6 months of IC lung function, then periodically for ongoing risk assessmen		atment to record	the patient's	personal bes
i. Risk factors for exacerbations				
Uncontrolled asthma symptoms: Having uncontrolled sy	mptoms is an im	portant risk facto	or for exacer	oations.
Factors that increase the risk of exacerbations even if the	patient has few a	sthma symptoms	s:‡	
SABA over-use: High SABA use (≥3 x 200-dose canister increased mortality particularly if ≥1 canister per month)	s/year associated	d with increased	risk of exace	erbations,
Inadequate ICS: not prescribed ICS, poor adherence, or	incorrect inhaler	technique		
Other medical conditions: Obesity, chronic rhinosinusitis,	GERD, confirme	ed food allergy, p	regnancy	
Exposures: Smoking, e-cigarettes, allergen exposure if s	ensitized, air poll	ution		
Psychosocial: Major psychological or socioeconomic pro	blems			
Lung function: Low FEV1 (especially <60% predicted), his	gh bronchodilator	responsiveness	,	
Type 2 inflammatory markers: Raised blood eosinophils,	high FeNO (see	biomarker overv	iew)	
Exacerbation history: Ever intubated or in intensive care	unit for asthma, ≧	1 severe exacer	bation in las	t year
ii. Risk factors for developing persistent airflow limitat	tion			
History: Preterm birth, low birth weight and greater infant	weight gain, free	quent productive	cough	
Medications: Lack of ICS treatment in patient with history	of severe exace	rbation		
Exposures: Tobacco smoke, noxious chemicals; occupat	tional or domestic	exposures		
Investigation findings: Low initial FEV ₁ , sputum or blood	eosinophilia			
iii. Risk factors for medication side-effects				
Systemic Frequent OCS, long-term, high-dose and/or po	tent ICS, P450 in	hibitors§		
Local: High-dose or potent ICS, poor inhaler technique				

Investigating uncontrolled asthma in primary care

GERD: gastro-esophageal reflux disease; ICS: inhaled corticosteroid; NSAID: non-steroidal anti-inflammatory drug; SABA: short-acting beta-ragonist